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Abstract

Robust navigation for mobile robots over long dis-
tances requires an accurate method for tracking the
robot position in the environment. Techniques for po-
sition estimation by determining camera ego-motion
from monocular or stereo sequences have been de-
scribed. However, long distance navigation requires
extremely high levels of robustness and a very low rate
of error growth. In this paper, we describe o methodol-
ogy for long-distance navigation that meets these goals.
We show that a system based on only camera ego-
motion estimates will accumulate errors with superlin-
ear growth in the distance troveled, owing to increasing
orientation errors. When an absolute orientation sen-
sor is incorporated, the error growth can be reduce to
linear in the distance traveled. We have tested these
techniques using both extensive simulation and hun-
dreds of real rover images and have achieved a low,
linear rate of error growth.

1 Introduction

Our goal is to perform robust and accurate rover
navigation autonomously over long distances to reach
terrain features with known location, but not within
sight. This is motivated by the high desirability for
Mars rovers to autonomously navigate to science tar-
gets observed in orbital or descent imagery. Since com-
munication with such rovers occurs only once per day,
navigation errors can result in the loss of an entire day
of scientific activity.

One method for improving the position estimation
errors that result from dead-reckoning is to estimate
the position changes from a sequence of images (stereo
or monocular) taken by the rover. This process is
called ego-motion estimation. Several methods for the
estimation of ego-motion have been proposed using
monocular sequences [1, 2, 3, 8] and stereo sequences
4,5, 6,9, 10]. In order for such techniques to be effec-
tive in long-distance rover navigation, the techniques

must be highly robust to problems such as poor odom-
etry, inaccurate feature matching, and outliers.

We have developed a method is capable of accu-
rate navigation over long distances using incremen-
tal stereo ego-motion. The use of stereo information
in this method has been crucial in both outlier re-
jection and reducing random errors that occur due
to feature localization and drift in each frame. We
use a maximume-likelihood formulation of motion es-
timation that models error in the landmark positions
more accurately than a least-squares formulation, and
thus yields more accurate results. Several methods
for improving the robustness of stereo ego-motion are
discussed, including optimized feature selection, im-
proved motion prediction, and multiple outlier rejec-
tion mechanisms. Reusing landmarks between frames
significantly improves the overall accuracy since the
errors at successive estimation steps become nega-
tively correlated.

For long-range navigation, it is important to con-
sider the rate of error growth as the robot travels.
Even a robust system will accumulate errors that grow
super-linearly with the distance traveled owing to in-
creasing orientation errors. However, the incorpora-
tion of an absolute orientation sensor, such as a com-
pass or sun sensor, greatly improves the long-range
performance, reducing the accumulated error to a lin-
ear function of the distance traveled.

We have constructed a simulator in order to eval-
uate changes in the ego-motion methodology with re-
spect to navigation performance. The simulator indi-
cates that, with our improvements, ego-motion perfor-
mance with error below 0.5% of the distance traveled
is potentially feasible. Experiments on hundreds of
real images have achieved errors of approximately 1%
of the distance traveled.

2 Motion estimation

Our motion estimation method is based upon
the maximum-likelihood ego-motion formulation of



Matthies [6, 7]. This method determines the observer
motion between two (or more) pairs of stereo images
captured by calibrated cameras. The basic elements
of the method are as follows.

Feature selection: The first step is to select land-
marks for which the 3D position can be precisely mea-
sured in successive stereo pairs. The initial landmarks
are selected by finding easily trackable features in the
left image of the first stereo pair.

Stereo matching (1): An estimate of the 3D posi-
tion of the landmarks is obtained by performing stereo
matching in the initial stereo pair. The procedure uses
a correlation-based search to locate the corresponding
point for each of the selected landmarks. Triangu-
lation using the known relative position between the
cameras is then used to determine the position of the
landmark with respect to the camera frame. This step
also provides a covariance matrix that models the er-
ror in the position estimate.

Feature tracking: Landmarks are located in subse-
quent stereo pairs using a correlation-based search for
the selected features in the left image, that is similar
to stereo matching. Prior knowledge of the approxi-
mate robot motion is used to select the search space
for the feature tracking.

Stereo matching (2): A second stereo matching
step is performed to estimate the 3D positions of the
landmarks with respect to the new camera frame. As
in the previous steps, this uses a correlation-based
search and triangulation is performed to estimate the
position.

Motion estimation: Motion estimation is per-
formed using Gaussian error distributions for the
landmark positions, which yields better robustness
than weighted least-squares minimization [6]. The
maximum-likelihood estimation problem requires an
iterative solution. However, convergence is fast and
requires negligible computation time compared to the
previous steps.

These steps are performed for each pair of consec-
utive stereo frames, retaining the same set of land-
marks, but replenishing those that were not found
or discarded. The overall motion estimate is deter-
mined as the combination of motions from each pair
of frames. Figure 1 shows the steps in the process to
estimate the motion between two frames.

3 Maximum-likelihood ego-motion

Given the noisy landmark positions from stereo
data, we use a maximum-likelihood formulation for
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Figure 1: Steps performed for motion estimation.

motion estimation. An early version of this method
was given in [6]. Further details can be found in [7].

Let L and L® be 3 x n matrices of the observed
landmark positions before and after a robot motion.
For each landmark we have:

L? =RLY 4+ T +e;, (1)

where R and T are the rotation and translation of
the robot and e combines the errors in the observed
positions of the landmarks at both locations. Assume,
for the moment, that the pre-move landmark positions
are errorless and the post-move landmark positions are
corrupted by Gaussian noise. In this case, the joint
conditional probability density of the observed post-
move landmark positions, given R and T, is Gaussian:

n
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where r; = L? — RL? — T and W; is the inverse co-
variance matrix of e¢;. The maximum-likelihood es-
timate for R and T is given by minimizing the ex-
ponent ., rI Wir;. Note that this reduces to the
least-squares solution if we let W; = w;I.

Solving for the maximum-likelihood motion esti-
mate is a nonlinear minimization problem, which we
solve through linearization and iteration. We linearize
the problem by taking the first-order expansion with
respect to the rotation angles. Let ©g be the initial
angle estimates and Ry be the corresponding rotation



matrix. The first-order expansion is:
L & RoLY + Ji(© — ©g) + T +e;, (3)

where J; is the Jacobian for the ith landmark and
e; is a Gaussian noise vector with covariance ©; =
X2+ Ry ESRE .

We can now determine a maximum-likelihood esti-
mate for © and T using r; = L¢—RoL!—J;(©—-00)-T
and W; = (3¢ + RoZ¢RY)~!. Differentiating the ob-
jective function with respect to © and T and setting
the derivatives to zero yields:
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where H; = [J; I] and L; = L¢ — RoL? + J;0,.

After solving (4), the new motion estimate is used
as an initial estimate for the next step and the pro-
cess is iterated until convergence. Further details, and
a technique to estimate only © without 7', so that es-

timation of T can be removed from the iteration, can
be found in [7].

4 Simulator

In order to test the long-range performance of the
ego-motion techniques under controlled conditions, we
have built a simulator that tracks randomly generated
landmarks for motion estimation. The initial land-
marks are generated by selecting random image loca-
tion in the left image of the first (pre-move) stereo
pair. The positions of the landmarks are backpro-
jected into 3D using a random (uniformly distributed)
height. Each landmark is then reprojected into the
right image of the stereo pair with Gaussian noise
(0 = 0.3 pixels) added in order to simulate feature
matching error.

A second (post-move) stereo pair is generated using
the same set of landmarks, but using camera models
translated and rotated to a new position (simulating
robot motion). The left image of the pair is gener-
ated by projecting the landmarks according to the
new camera model and adding more Gaussian noise
(o = 0.5 pixels) in order to simulate the feature track-
ing error. The new image features are again backpro-
jected into 3D (with the same heights) and reprojected
into the right image of the post-move stereo pair with
additional noise.

The incremental robot motion estimate is com-
puted using the maximum-likelihood ego-motion
method described above. Long-distance navigation is

simulated by chaining many of the incremental moves
together. At each step, the second set of landmark po-
sitions is saved for use as the initial set in the next step
and new landmark positions are generated as above.
When landmarks move out of the robot field of view,
they are replenished with randomly positioned land-
marks in the field of view.

5 Long-range error growth

Since we are interested in long-range navigation for
Mars rovers, we have performed experiments exam-
ining the error growth of the stereo ego-motion tech-
niques by applying them to a long sequence of simu-
lated data. Our goal here is to understand the asymp-
totic growth of the error over long distances.

Our initial experiment considered a 500 meter tra-
verse, with ego-motion estimates occurring ever 0.5
meters using cameras with a 45° field-of-view and
512 x 480 pixels. Figure 2 shows the error growth in
the robot position for this experiment. It can be ob-
served that the growth in the error is greater than lin-
ear in the distance traveled. The explanation for this
is that the expected error in the orientation param-
eters grows approximately proportional to the square
root of the distance traveled (since the overall variance
is the sum of the individual variances). The overall
position error grows as the sum of two terms. First,
the individual position errors contribute a term that is
expected to grow with the square root of the distance
traveled. Second, the accumulating orientation errors
contribute a term that grows as the integral of the
orientation error. We thus expect a super-linear con-
tribution from this term, which grows as O(d?%), where
d is the distance traveled. The contribution from the
orientation error thus dominates the overall position
error.

In order to eliminate the super-linear error growth,
we have examined the use of an absolute orientation
sensor to provide periodic updates to the orientation
estimate. For example, accelerometers can be used to
provide roll and pitch information, while a compass,
sun sensor, or even a panoramic camera could be used
to determine the robot yaw. We have simulated such
sensors as providing periodic orientation updates with
Gaussian noise having zero mean and 1° standard de-
viation. Figure 2 shows that this results in linear error
growth in the distance traveled when the orientation
updates are used and, in general, the growth is much
slower than when only the ego-motion estimates are
used. In this experiment, the simulations indicate that
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Figure 2: Expected position error as a function of distance
traveled.

error less than 1% of the distance traveled is achiev-
able with the error variances described above.

Our conclusion is that an absolute orientation sen-
sor is critical for navigation over long distances, unless
some other means is used to periodically update the
robot position. If no orientation sensor is used, the
robot may navigate safely over short distances. How-
ever, over long distances the increasing orientation er-
rors will build until the position estimate is useless.

6 Robust estimation

In order to achieve accurate navigation over long
distances, errors in the landmark position estimation
and matching process must have a very small effect
on each computed motion estimate. Tracking must
be performed such that mismatches are rare. When
mismatches occur, there must be mechanisms for de-
tecting and discarding them. We describe techniques
for performing these steps here, while managing the
overall error buildup over time and dealing with cam-
era roll as the robot moves.

6.1 Improved feature tracking

In many environments, it is common for the land-
marks that are selected to look somewhat similar to
each other and other image locations. If a large search
space is necessary for each feature, incorrect matches
occur frequently, since the difference in the appear-
ance of the landmarks after the camera motion may be
greater than the difference in appearance between the
landmark and other image locations. For this reason,
it is important to limit the search space over which we
search for landmarks. Of course, we cannot limit the

search space to be so small that it does not contain
the correct match.

An a priori estimate of each landmark position is
obtained using the robot odometry estimate. How-
ever, errors in the odometry incur the need for a large
search window. In order to decrease the size of this
search window, we estimate the robot pitch and yaw
errors by first detecting a landmark near the top of
the image (and thus relatively far away) using a large
template window. In this case, we use a large search
window, but since the landmark is also large, we are
able to avoid mismatches in the image. After correct-
ing the robot pitch and yaw estimates such that the
initial landmark match is correct, we can reduce the
search windows for the later correlation steps, thereby
reducing the chance of a false positive.

Within the reduced search windows, our experi-
ments have indicated that correlation using a two-
resolution pyramid with decimation by a factor of four
provides the best combination of speed and tracking
performance.

6.2 Outlier rejection

‘We use several methods to reject outliers in the mo-
tion estimation process. Initially, matches in both the
stereo matching and feature tracking steps are elimi-
nated if the correlation score is too low. This helps to
filter out cases where a landmark is not present in the
new image and cases where the change in appearance
is so large that correct matching is not possible.

For each stereo match, the rays from the cameras
through the image features are computed to determine
if they consistent. The consistency is measured by the
distance between the rays at the location of smallest
separation. (If there was no error, the rays would in-
tersect.) If this gap is not in front of the cameras, or if
the projection of the gap into the image is larger than
a pixel or two, the match can be rejected, since it is
not geometrically feasible.

After all of the matches have been found and
tracked in both stereo pairs, a rigidity test is applied to
prevent gross errors. Here, we use a constraint that the
landmarks must be stationary. If a landmark moves
between stereo frames, the landmark is not useful for
determining the robot motion. This test repeatedly
rejects the landmark that appears to have moved the
most, by examining the pairwise distances between the
landmarks before and after the robot motion. Land-
marks are rejected until all remaining deviations are
small enough to be considered noise.

Finally, outlier rejection is performed within the
maximume-likelihood motion estimation procedure.
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Figure 3: One cycle of robust feature matching. (a) Landmarks selected. (b) Landmarks matched in right image. (c)
Predicted positions in next image. (d) Matched positions in left image. (e) Matched positions in right image. (f) Landmarks

after replenishment.

After computing a motion estimate, the residual er-
ror for each landmark is determined. Once again, the
worst matching landmarks are rejected if they have a
residual greater than some threshold and the estima-
tion is repeated.

6.3 Multi-frame tracking

Matthies [7} has shown that the errors between suc-
cessive motions are negatively correlated if the same
landmarks are tracked through the images. We thus
expect to have lower error when the same landmarks
are tracked, rather than selecting new landmarks at
each step. Of course, some landmarks must be re-
plenished at each step, since some will move out of
the field-of-view and some will be rejected as outliers.
However, this effect is significant, even when there is
only partial overlap between the landmark sets. In
our experiments, we have achieved a 27.7% reduction
in navigation error when multi-frame tracking is used,
rather than considering each pair of frames separately.
This effect is thus useful in maintaining accurate nav-
igation over long distances.

6.4 Camera roll

Camera roll due to traversing rough terrain is a
significant problem for robots that operate outdoors.

While pitch and yaw are reasonably approximated by
translation of the features in the image, roll causes the
features to be rotated and makes tracking significantly
more difficult. Our experiments indicate that correla-
tion scores degrade approximately linearly with the
camera roll. In most terrains, camera roll of less than
10° can be tolerated without difficulty to the feature
tracking.

Clearly, a robust motion estimation system for out-
door navigation must consider the effects of camera
roll. The simplest solution to this problem is to en-
sure that image pairs are captured frequently enough
that the robot does not roll by more than 10° between
frames. For many systems, this solution is adequate.
An alternative, for cases where large amounts of cam-
era roll are possible, is the use of an orientation sensor,
such as a gyro or accelerometer. If the approximate
roll of the camera is known, then the correlation win-
dow for each landmark can be rotated to the appro-
priate orientation for tracking.

7 Results

These techniques have been tested on hundreds of
stereo pairs, including outdoor terrain, with the robot
undergoing six degree-of-freedom motion. Figure 3
shows one complete cycle of the motion estimation
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Figure 4: Several cycles of robust feature matching for ego-motion. The squares indicate the tracked landmarks and the
lines show the motion of the landmark from the previous frame.

process for a simple example of forward motion. First,
landmarks were selected automatically in the left im-
age of the initial stereo pair. The matching locations
were then detected in the corresponding right image.
A small number of landmarks were discarded at this
step due to a poor correlation score or a significant
gap between the rays from the cameras. Next, the lo-
cations of the landmarks were predicted in the next
image of the sequence.

After correcting for pitch and yaw error, the ac-
tual locations of the landmarks were detected in the
left and right images of this image. Several landmarks
were eliminated at this stage using the rigidity con-
straint. The remaining landmarks were used to de-
termine the motion of the robot. Finally, the land-
mark set was reduced by eliminating those features
that were expected to move out of the field-of-view in
the next step and replenished with new landmarks.

Figure 4 shows landmark tracking for six consecu-
tive frames of forward motion in rocky terrain. (Fig-
ure 3 corresponds to the third step in this sequence.)
Despite errors in the nominal camera movements and
features occurring on occluding boundaries that are
difficult to track, it can be observed that the final
tracking is highly robust, with no outliers in the track-
ing process. For this data set, the overall error was
1.3% of the distance traveled.

In order to test the performance of these techniques
on extended sequences, we have applied them to im-

agery from a rover traverse consisting of 210 stereo
pairs. This traverse was performed with a small rover
and a wide field-of-view, so the cameras were close
to the ground and there was considerable distortion
in the appearance of close-range locations. Figure 5
shows an example of consecutive stereo pairs with
320 x 240 resolution. The rover traversed approxi-
mately 20 meters, taking images about every 10 cen-
timeters. For cameras with a higher viewpoint and
narrower field-of-view, the techniques could be exe-
cuted less frequently. However, for this rover, small
motions between stereo pairs are necessary to track
the foreground landmarks. Figure 6 shows the re-
sults for this traverse. It can be observed that the
ego-motion track closely follows the ground-truth from
GPS, while the odometry estimate diverges from the
true position. The error in this run was approximately
1.2%.

8 Summary

We have discussed techniques for improving long-
range rover navigation using stereo ego-motion. An
important result of our investigation is that an abso-
lute orientation sensor is necessary to perform accu-
rate navigation over long distances, since estimation
based on ego-motion alone has error that grows super-
linearly with the distance traveled. The use of an ori-



Figure 5: Stereo pairs from rover traverse sequence.

entation sensor reduces the error growth to linear in
the distance traveled and results in a much lower error
in practice. The use of stereo data was also critical
to elimination of outliers and accurate motion esti-
mation. Techniques for performing robust feature se-
lection and tracking with outlier rejection have been
developed in order to ensure accurate motion estima-
tion at each step. We believe that this combination of
techniques results in a method with greater robustness
than previous techniques and that is capable of accu-
rate motion estimation for long-distance navigation.
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